# 0 Intro
# 为什么要学习设计模式
烂代码,比如命名不规范、类设计不合理、分层不清晰、没有模块化概念、代码结构混乱、高度耦合等等。这样的代码维护起来非常费劲,添加或者修改一个功能,常常会牵一发而动全身,让你无从下手,恨不得将全部的代码删掉重写!目前写的面向数据库的 CRUD 代码其实都没有涉及到除命名外其他方面,因为都是公司搭建好的项目结构,自己填空而已。不过后面的问题确实是现在能深刻体会到的。即使自己写一个通用模块,写完也会觉得不易扩展。所以这次希望我能跟着《设计模式之美》这个专栏学到这些知识,并合理运用到自己代码中,并在阅读开源项目的代码时能做到事半功倍。 简单来说就是提高代码自洽与复用性。
高质量的代码都有什么特征:
可读性(readability)
Martin Fowler: Any fool can write code that a computer can understand. Good programmers write code that humans can understand.
可维护性(maintainability)
可扩展性(extensibility)
灵活性(flexibility)
简洁性(simplicity)
KISS 原则:Keep It Simple,Stupid
可理解性(understandability)
易修改性(changeability)
可复用(reusability)
DRY:Don’t Repeat Yourself
可测试性(testability)
模块化(modularity)
高内聚低耦合(high cohesion loose coupling)
高效(high effciency)
高性能(high performance)
安全性(security)
兼容性(compatibility)
易用性(usability)
整洁(clean)
清晰(clarity)
简单(simple)
直接(straightforward)
少即是多(less code is more)
文档详尽(well-documented)
分层清晰(well-layered)
正确性(correctness、bug free)
健壮性(robustness)
鲁棒性(robustness)
可用性(reliability)
可伸缩性(scalability)
稳定性(stability)
优雅(elegant)
......
# 要学习的知识分类

# 面向对象
- 面向对象的四大特性:封装、抽象、继承、多态
- 面向对象编程与面向过程编程的区别和联系
- 面向对象分析、面向对象设计、面向对象编程
- 接口和抽象类的区别以及各自的应用场景
- 基于接口而非实现编程的设计思想
- 多用组合少用继承的设计思想
- 面向过程的贫血模型和面向对象的充血模型
最经典的设计模式书籍是 GoF 的《设计模式》,它的中文全称是《设计模式:可复用面向对象软件的基础》,英文全称是“Design Patterns: Elements of Reusable Object-Oriented Software”。
# 设计原则
常用的设计原则:
- SOLID 原则
- SRP(Single Responsibility Principle) 单一职责原则
- OCP(Open Closed Principle) 开闭原则
- LSP(Liskov Substitution Principle) 里式替换原则
- ISP(Interface Segregation Principle) 接口隔离原则
- DIP(Dependence Inversion Principle) 依赖倒置原则
- DRY(Don't Repeat Yourself) 原则
- KISS(Keep It Simple,Stupid) 原则
- YAGNI(You Ain’t Gonna Need It) 原则
- LoD(Law of Demeter) 法则
# 设计模式
经典的设计模式有 23 种。随着编程语言的演进,一些设计模式(比如 Singleton)也随之过时,甚至成了反模式,一些则被内置在编程语言中(比如 Iterator),另外还有一些新的模式诞生(比如 Monostate)。
# 创建型
- 常用的有:单例模式、工厂模式(工厂方法和抽象工厂)、建造者模式。
- 不常用的有:原型模式。
# 结构型
- 常用的有:代理模式、桥接模式、装饰者模式、适配器模式。
- 不常用的有:门面模式、组合模式、享元模式。
# 行为型
- 常用的有:观察者模式、模板模式、策略模式、职责链模式、迭代器模式、状态模式。
- 不常用的有:访问者模式、备忘录模式、命令模式、解释器模式、中介模式。
# 编程规范
《重构》《代码大全》《代码整洁之道》等
# 代码重构
在软件开发中,只要软件在不停地迭代,就没有一劳永逸的设计。随着需求的变化,代码的不停堆砌,原有的设计必定会存在这样那样的问题。针对这些问题,我们就需要进行代码重构。重构是软件开发中非常重要的一个环节。持续重构是保持代码质量不下降的有效手段,能有效避免代码腐化到无可救药的地步。需要掌握以下几个知识点:
- 重构的目的(why)、对象(what)、时机(when)、方法(how);
- 保证重构不出错的技术手段:单元测试和代码的可测试性;
- 两种不同规模的重构:大重构(大规模高层次)和小重构(小规模低层次)。
# 面向过程 & 面向对象
面向对象编程是一种编程范式或编程风格。它以类或对象作为组织代码的基本单元,并将封装、抽象、继承、多态四个特性,作为代码设计和实现的基石 。面向对象编程语言是支持类或对象的语法机制,并有现成的语法机制,能方便地实现面向对象编程四大特性(封装、抽象、继承、多态)的编程语言。
面向过程编程也是一种编程范式或编程风格。它以过程(可以为理解方法、函数、操作)作为组织代码的基本单元,以数据(可以理解为成员变量、属性)与方法相分离为最主要的特点。面向过程风格是一种流程化的编程风格,通过拼接一组顺序执行的方法来操作数据完成一项功能。面向过程编程语言首先是一种编程语言。它最大的特点是不支持类和对象两个语法概念,不支持丰富的面向对象编程特性(比如继承、多态、封装),仅支持面向过程编程。
面向过程和面向对象最基本的区别就是,代码的组织方式不同。面向过程风格的代码被组织成了一组方法集合及其数据结构(struct User),方法和数据结构的定义是分开的。面向对象风格的代码被组织成一组类,方法和数据结构被绑定一起,定义在类中。
struct User {
char name[64];
int age;
char gender[16];
};
struct User parse_to_user(char* text) {
// 将text(“小王&28&男”)解析成结构体struct User
}
char* format_to_text(struct User user) {
// 将结构体struct User格式化成文本("小王\t28\t男")
}
void sort_users_by_age(struct User users[]) {
// 按照年龄从小到大排序users
}
void format_user_file(char* origin_file_path, char* new_file_path) {
// open files...
struct User users[1024]; // 假设最大1024个用户
int count = 0;
while(1) { // read until the file is empty
struct User user = parse_to_user(line);
users[count++] = user;
}
sort_users_by_age(users);
for (int i = 0; i < count; ++i) {
char* formatted_user_text = format_to_text(users[i]);
// write to new file...
}
// close files...
}
int main(char** args, int argv) {
format_user_file("/home/zheng/user.txt", "/home/zheng/formatted_users.txt");
}
public class User {
private String name;
private int age;
private String gender;
public User(String name, int age, String gender) {
this.name = name;
this.age = age;
this.gender = gender;
}
public static User praseFrom(String userInfoText) {
// 将text(“小王&28&男”)解析成类User
}
public String formatToText() {
// 将类User格式化成文本("小王\t28\t男")
}
}
public class UserFileFormatter {
public void format(String userFile, String formattedUserFile) {
// Open files...
List users = new ArrayList<>();
while (1) { // read until file is empty
// read from file into userText...
User user = User.parseFrom(userText);
users.add(user);
}
// sort users by age...
for (int i = 0; i < users.size(); ++i) {
String formattedUserText = user.formatToText();
// write to new file...
}
// close files...
}
}
public class MainApplication {
public static void main(Sring[] args) {
UserFileFormatter userFileFormatter = new UserFileFormatter();
userFileFormatter.format("/home/zheng/users.txt", "/home/zheng/formatted_users.txt");
}
}
面向对象编程跟面向过程编程比起来,到底有哪些优势?
对于大规模复杂程序的开发,程序的处理流程并非单一的一条主线,而是错综复杂的网状结构。面向对象编程比起面向过程编程,更能应对这种复杂类型的程序开发。
像 C 语言这种面向过程的编程语言,我们也可以按照功能的不同,把函数和数据结构放到不同的文件里,以达到给函数和数据结构分类的目的,照样可以实现代码的模块化。只不过面向对象编程本身提供了类的概念,强制你做这件事情,而面向过程编程并不强求。
面向对象编程相比面向过程编程,具有更加丰富的特性(封装、抽象、继承、多态)。利用这些特性编写出来的代码,更加易扩展、易复用、易维护。
从编程语言跟机器打交道的方式的演进规律中,我们可以总结出:面向对象编程语言比起面向过程编程语言,更加人性化、更加高级、更加智能。
# 面向对象
# 什么是 OOA & OOD
面向对象分析英文缩写是 OOA,全称是 Object Oriented Analysis;面向对象设计的英文缩写是 OOD,全称是 Object Oriented Design。OOA、OOD、OOP 三个连在一起就是面向对象分析、设计、编程(实现),正好是面向对象软件开发要经历的三个阶段。
# 什么是 OOP & OOPL
面向对象编程的英文缩写是 OOP,全称是 Object Oriented Programming。OOP 是一种编程范式或编程风格。它以类或对象作为组织代码的基本单元,并将封装、抽象、继承、多态四个特性,作为代码设计和实现的基石 。
面向对象编程语言是支持类或对象的语法机制,并有现成的语法机制,能方便地实现面向对象编程四大特性(封装、抽象、继承、多态)的编程语言。
我们在面向对象编程的过程中,经常会遇到 is-a 这种类关系(比如狗是一种动物),而继承这个特性就能很好地支持这种 is-a 的代码设计思路,并且解决代码复用的问题,所以,继承就成了面向对象编程的四大特性之一。但是随着编程语言的不断迭代、演化,人们发现继承这种特性容易造成层次不清、代码混乱,所以,很多编程语言在设计的时候就开始摒弃继承特性,比如 Go 语言。但是,我们并不能因为它摒弃了继承特性,就一刀切地认为它不是面向对象编程语言了。
# UML
UML(Unified Model Language),统一建模语言。它不仅仅包含我们常提到类图,还有用例图、顺序图、活动图、状态图、组件图等。单说类之间的关系,UML 就定义了很多种,比如泛化、实现、关联、聚合、组合、依赖等。
# 封装(Encapsulation)
封装也叫作信息隐藏或者数据访问保护。类通过暴露有限的访问接口,授权外部仅能通过类提供的方式(或者叫函数)来访问内部信息或者数据。优点如下:
- 加强可控性。不可以随意访问、修改类中的属性
- 提高类的易用性。只需了解暴露的方法即可,不用对每个属性都了解
下面这段代码是金融系统中一个简化版的虚拟钱包的代码实现。在金融系统中,我们会给每个用户创建一个虚拟钱包,用来记录用户在我们的系统中的虚拟货币量。
public class Wallet {
private String id;
private long createTime;
private BigDecimal balance;
private long balanceLastModifiedTime;
// ...省略其他属性...
public Wallet() {
this.id = IdGenerator.getInstance().generate();
this.createTime = System.currentTimeMillis();
this.balance = BigDecimal.ZERO;
this.balanceLastModifiedTime = System.currentTimeMillis();
}
// 注意:下面对get方法做了代码折叠,是为了减少代码所占文章的篇幅
public String getId() { return this.id; }
public long getCreateTime() { return this.createTime; }
public BigDecimal getBalance() { return this.balance; }
public long getBalanceLastModifiedTime() { return this.balanceLastModifiedTime; }
public void increaseBalance(BigDecimal increasedAmount) {
if (increasedAmount.compareTo(BigDecimal.ZERO) < 0) {
throw new InvalidAmountException("...");
}
this.balance.add(increasedAmount);
this.balanceLastModifiedTime = System.currentTimeMillis();
}
public void decreaseBalance(BigDecimal decreasedAmount) {
if (decreasedAmount.compareTo(BigDecimal.ZERO) < 0) {
throw new InvalidAmountException("...");
}
if (decreasedAmount.compareTo(this.balance) > 0) {
throw new InsufficientAmountException("...");
}
this.balance.subtract(decreasedAmount);
this.balanceLastModifiedTime = System.currentTimeMillis();
}
}
参照封装特性,对钱包的这四个属性的访问方式进行了限制。调用者只允许通过上述这六个方法来访问或者修改钱包里的数据。这样设计,是因为从业务的角度来说,id、createTime 在创建钱包的时候就确定好了,之后不应该再被改动,所以,我们并没有在 Wallet 类中,暴露 id、createTime 这两个属性的任何修改方法,比如 set 方法。而且,这两个属性的初始化设置,对于 Wallet 类的调用者来说,也应该是透明的,所以,我们在 Wallet 类的构造函数内部将其初始化设置好,而不是通过构造函数的参数来外部赋值。
对于钱包余额 balance 这个属性,从业务的角度来说,只能增或者减,不会被重新设置。所以,我们在 Wallet 类中,只暴露了 increaseBalance() 和 decreaseBalance() 方法,并没有暴露 set 方法。对于 balanceLastModifiedTime 这个属性,它完全是跟 balance 这个属性的修改操作绑定在一起的。只有在 balance 修改的时候,这个属性才会被修改。所以,我们把 balanceLastModifiedTime 这个属性的修改操作完全封装在了 increaseBalance() 和 decreaseBalance() 两个方法中,不对外暴露任何修改这个属性的方法和业务细节。这样也可以保证 balance 和 balanceLastModifiedTime 两个数据的一致性。
对于封装这个特性,需要编程语言本身提供访问权限控制来支持。例子中的 private、public 等关键字就是 Java 语言中的访问权限控制语法。private 关键字修饰的属性只能类本身访问,可以保护其不被类之外的代码直接访问。如果 Java 语言没有提供访问权限控制语法,所有的属性默认都是 public 的,那任意外部代码都可以通过类似 wallet.id=123; 这样的方式直接访问、修改属性,也就没办法达到隐藏信息和保护数据的目的了,也就无法支持封装特性了。
# 抽象(Abstraction)
抽象这个概念是一个非常通用的设计思想,并不单单用在面向对象编程中,也可以用来指导架构设计等。而且这个特性也并不需要编程语言提供特殊的语法机制来支持,只需要提供“函数”这一非常基础的语法机制,就可以实现抽象特性、所以,它没有很强的“特异性”,有时候并不被看作面向对象编程的特性之一。
抽象讲的是如何隐藏方法的具体实现,让调用者只需要关心方法提供了哪些功能,并不需要知道这些功能是如何实现的。在面向对象编程中,我们常借助编程语言提供的接口类(比如 Java 中的 interface 关键字语法)或者抽象类(比如 Java 中的 abstract 关键字语法)这两种语法机制,来实现抽象这一特性。优点如下:
- 抽象及封装都是处理复杂性的有效手段。忽略掉一些非关键性的实现细节,只关注功能点不关注实现的设计思路
- 抽象作为一个非常宽泛的设计思想,在代码设计中,起到非常重要的指导作用。很多设计原则都体现了抽象这种设计思想,比如基于接口而非实现编程、开闭原则(对扩展开放、对修改关闭)、代码解耦(降低代码的耦合性)等。
对于抽象这个特性,如下例子解释:
public interface IPictureStorage {
void savePicture(Picture picture);
Image getPicture(String pictureId);
void deletePicture(String pictureId);
void modifyMetaInfo(String pictureId, PictureMetaInfo metaInfo);
}
public class PictureStorage implements IPictureStorage {
// ...省略其他属性...
@Override
public void savePicture(Picture picture) { ... }
@Override
public Image getPicture(String pictureId) { ... }
@Override
public void deletePicture(String pictureId) { ... }
@Override
public void modifyMetaInfo(String pictureId, PictureMetaInfo metaInfo) { ... }
}
在上面的这段代码中,我们利用 Java 中的 interface 接口语法来实现抽象特性。调用者在使用图片存储功能的时候,只需要了解 IPictureStorage 这个接口类暴露了哪些方法就可以了,不需要去查看 PictureStorage 类里的具体实现逻辑。
实际上,抽象这个特性是非常容易实现的,并不需要非得依靠接口类或者抽象类这些特殊语法机制来支持。换句话说,并不是说一定要为实现类(PictureStorage)抽象出接口类(IPictureStorage),才叫作抽象。即便不编写 IPictureStorage 接口类,单纯的 PictureStorage 类本身就满足抽象特性。因为,类的方法是通过编程语言中的“函数”这一语法机制来实现的。通过函数包裹具体的实现逻辑,这本身就是一种抽象。调用者在使用函数的时候,并不需要去研究函数内部的实现逻辑,只需要通过函数的命名、注释或者文档,了解其提供了什么功能,就可以直接使用了。
# 继承(Inheritance)
继承是用来表示类之间的 is-a 关系,比如猫是一种哺乳动物。优点如下:
- 代码复用(也可以通过其他方式来解决这个代码复用的问题,比如利用组合关系而不是继承关系)
过度使用继承,继承层次过深过复杂,就会导致代码可读性、可维护性变差。为了了解一个类的功能,我们不仅需要查看这个类的代码,还需要按照继承关系一层一层地往上查看“父类、父类的父类……”的代码。还有,子类和父类高度耦合,修改父类的代码,会直接影响到子类。继承这个特性也是一个非常有争议的特性。很多人觉得继承是一种反模式。我们应该尽量少用,甚至不用。
# 多态(Polymorphism)
多态是指父类引用指向子类对象,在实际的代码运行过程中,调用子类的方法实现。优点如下:
- 提高代码的可扩展性和复用性
需要三个语法机制来实现多态:
- 支持父类对象可以引用子类对象;
- 支持继承 / 实现接口 / duck-typing 语法(动态语言支持得多);
- 支持子类可以重写父类中的方法;
多态也是很多设计模式、设计原则、编程技巧的代码实现基础,比如策略模式、基于接口而非实现编程、依赖倒置原则、里式替换原则、利用多态去掉冗长的 if-else 语句等等。
继承和实现接口来实现多态就不多赘述,下面来看下,如何用 duck-typing 来实现多态特性:
class Logger:
def record(self):
print(“I write a log into file.”)
class DB:
def record(self):
print(“I insert data into db. ”)
def test(recorder):
recorder.record()
def demo():
logger = Logger()
db = DB()
test(logger)
test(db)
duck-typing 实现多态的方式非常灵活。Logger 和 DB 两个类没有任何关系,既不是继承关系,也不是接口和实现的关系,但是只要它们都有定义了 record() 方法,就可以被传递到 test() 方法中,在实际运行的时候,执行对应的 record() 方法。也就是说,只要两个类具有相同的方法,就可以实现多态,并不要求两个类之间有任何关系,这就是所谓的 duck-typing,是一些动态语言所特有的语法机制。
# 面向对象中的面向过程代码
# 滥用 getter、setter 方法
定义所有属性的 getter、setter 方法,甚至使用 Lombok 插件在类上标注@Data自动生成所有属性的 getter、setter 方法。导致的问题有:
对 private 属性也可以通过 setter 方法来修改其值(特别是自动生成的 setter 方法),没有体现封装性
即使对 private 属性不定义 setter 方法,若通过 getter 方法获取的是引用对象,也可以修改其值,没有体现封装性
此处对于 Container 可以使用
Collections.unmodifiableCollection等方法来解决,不过还是可以修改 Container 中的引用对象的值,后续设计模式中会解决此问题对于有些业务逻辑需要手动 setter 多个属性来赋值,且可能忘记赋值某些属性,没有体现封装性
# 滥用全局变量和全局方法
在面向对象编程中,常见的全局变量有单例类对象、静态成员变量、常量等,常见的全局方法有静态方法。单例类对象在全局代码中只有一份,所以,它相当于一个全局变量。静态成员变量归属于类上的数据,被所有的实例化对象所共享,也相当于一定程度上的全局变量。而常量是一种非常常见的全局变量,比如一些代码中的配置参数,一般都设置为常量,放到一个 Constants 类中。静态方法一般用来操作静态变量或者外部数据。
Constants 类、Utils 类的设计尽量能做到职责单一,定义一些细化的小类,比如 RedisConstants、FileUtils,而不是定义一个大而全的 Constants 类、Utils 类。除此之外,如果能将这些类中的属性和方法,划分归并到其他业务类中,那是最好不过的了,能极大地提高类的内聚性和代码的可复用性。
# 定义数据和方法分离的类
基于 MVC 三层结构做 Web 方面的后端开发,这样的代码天天都在写!!!贫血模型的开发模式!数据和操作是分开定义在 VO/BO/Entity 和 Controler/Service/Repository 中的。